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The paper is concerned with free vibrations of geometrically non-linear elastic Timoshen-
ko beams with immovable supports. The equations of motion are derived by applying the
Hamilton principle. The approximate solutions are based on the negligence of longitudinal
inertia forces but inclusion of longitudinal deformations. The Ritz method is used to de-
termine non-linear modes and the associated non-linear natural frequencies depending on
the vibration amplitude. The beam is discretized into linear elements with independent di-
splacement fields. Consideration of the beams divided into the regular mesh enables one to
express the equilibrium conditions for an arbitrary large number of elements in form of one
difference equation. Owing to this, it is possible to obtain an analytical solution of the dyna-
mic problem although it has been formulated by the finite element method. Some numerical
results are given to show the effects of vibration amplitude, shear deformation, thickness
ratio, rotary inertia, mass distribution and boundary conditions on the non-linear natural
frequencies of discrete Timoshenko beams.
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1. Introduction

The linear free vibration of Timoshenko beams was studied by Levinson and Cooke (1982). Bha-
shyam and Prathap (1981) applied the Finite Element Method and elements with linear shape
functions to determine natural frequencies of Timoshenko beams. The authors eliminated the
shear locking by a selective reduced integrations procedure. The studies of beams with immova-
ble supports weere carried out by Woinowsky-Krieger (1950), Hsu (1960), Evensen (1968) and
Lewandowski (1987). The authors used a continuum approach as well as the finite element ap-
proach proposed by Levinson and Cooke (1982), Sarma and Varadan (1983) and Kitipornchai et
al. (2009). The exact solutions given in form of elliptic functions were presented by Woinowsky-
-Krieger (1950) and Hsu (1960). Evensen (1968) analysed beams with various boundary condi-
tions using the perturbation method. Lewandowski (1987) applied the Ritz method to obtain
the frequency-amplitude relationship for elastically supported beams. The solutions presented by
Bhashyam and Prathap (1980) as well as Sarma and Varadan (1983) are based on the assump-
tion that the equation of motion is satisfied only at the instant of the maximum deformation.
Dumir and Bhaskar (1988) compared the results of analysis of non-linear vibrations of beams
and plates obtained by various methods. They also brought out the source of errors which appear
in some finite elements formulations, e.g. presented by Mei and Decha-Umphai (1985). Marur
and Prathap (2005) solved the non-linear vibration problem of Timoshenko beams by applying
variational formulations, and similar isssues for thick asymetric beams were inastigated in a
wide range by Singh and Rao (1998). The problem of non-linear vibration of Timoshenko be-
ams taking into account cracking was invastigated by Kitipornchai et al. (2009). The non-linear
formulation of the Timoshenko beam based on the modified couple stress theory was applied by
Asghari et al. (2010) to static and free vibration analysis of beams.
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Effectiveness of the Finite Element Method depends e.g. on the type of finite elements taken
in the analysis. Many of them induce undesirable parasitic effects as shear locking. A critical
analysis of a class of finite elements was carried out by Rakowski (1990, 1991a, 1991b). In the
present work the linear finite element developed by Rakowski (1990) is used in the analysis of
non-linear vibration of the Timoshenko beam. Such an improved linear element does not lock and
gives a better convergence to the exact results than the reduced-integrated one, and the division
of considered beams into the regular mesh of identical elements enables one to formulate the
equilibrium conditions in form of one difference equation. The advantage of this FEM formulation
idea is that the solution of the considered dynamic problem can be obtained in an analytical
closed form and that it facilitates analyses regardless of the number of finite elements. The
solving procedure is analogous to that used for continuous systems, but in this case the nodal
displacements are spatial functions of the discrete variable (the index number of a node). This
methodology was adopted to solve the problem of vibrations of infinite Bernoulli-Euler beams
by Rakowski and Wielentejczyk (1996, 2002). In the present approach, the equations of motion
for a continuous beam are derived from the variational formulation by applying Hamilton’s
principle. The approximate time function is assumed to be harmonic and the solution of the
problem is based on the idea presented by Rosenberg (1966) and Szemplińska-Stupnicka (1983)
where non-linear normal modes and natural frequencies of vibrations are unknown and amplitude
dependent. The effects of shear deformation, thickness ratio and rotary inertia on the non-linear
natural frequencies are analysed. The element stiffness matrix and the consistent mass matrix
are derived using the simple linear elements with independent displacement fields. The shear
locking in exactly integrated elements is eliminated by introducing a scalling factor into the
stiffness matrix (Rakowski, 1990). Beams with different boundary conditions are considered.
The comparison of results obtained for the evaluated elements and the reduced-integrated ones
is given.

2. Theoretical considerations

The equation for the strain energy for a beam of length l, including shear deformation, axial
force, longitudal and the large transverse displacement effect, is

U =

l
∫

0

EA

2

(

u,x −
1

2
w2,x

)2
dx+

l
∫

0

EJ

2
θ2,x dx+

l
∫

0

κGA

2
(w,x − θ)

2 dx

+

l
∫

0

H
(

u,x −
1

2
w2,x

)2
dx

(2.1)

where u, w are the longitudinal and transverse displacements of the centroidal axis, θ is the
rotation of the beam section, E, G are the elastic and shear moduli, J , A are the moment of
inertia and the cross-section area, respectively, H is the initial axis force and κ is the shear
coefficient. The kinetic energy including horizontal and rotary inertias can be expressed as

T =

l
∫

0

m

2
u2,t dx+

l
∫

0

m

2
w2,t dx+

l
∫

0

mρ2

2
θ2,t dx (2.2)

where m is mass per unit length and ρ is the radius of gyration of the cross section.

Equations (2.1) and (2.2) give, on applying Hamilton’s principle, the following equations of
motion
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EA
[

u,x +
1

2
(w,x)

2
]

,x
−mu,tt = 0

{

Hw,x +EA
[

u,x +
1

2
(w,x)

2
]

w,x
}

,x
+ κGA[w,x − θ],x −m,tt = 0

EJθ,xx + κGA(w,x − θ)−mρ
2θ,tt = 0

(2.3)

Neglecting the horizontal inertia forces in the second equation of (2.3), yields

C = EA
[

u,x +
1

2
(w,x)

2
]

,x
= const (2.4)

Integrating expression (2.4) in the range from 0 to l for an immovable beam, we have

C =

l
∫

0

EA

2a
w2,x dx (2.5)

Substituting (2.4) into equation (2.3) and eliminating the unknown function θ, yields

(H + C

κGA
+ 1
)∂4w

∂x4
−
H + C

EJ

∂2w

∂x2
−
[ m

κGA
+
mρ2

EJ

(H + C

κGA
+ 1
)] ∂4w

∂x2∂t2

+
m

EJ

∂2w

∂t2
+
m2ρ2

κEJGA

∂4w

∂t4
= 0

(2.6)

Let us assume the approximate solution to equation (2.6) to be harmonic function of time
(Woinowsky-Krieger, 1950)

w(x, t) = αW (x) cos ωt (2.7)

whereW (x) is a function of the spatial variable (not given a priori), α is the vibration amplitude
of an arbitrary point x0 of the beam axis for whichW (x0) = 1. The non-linear normal modeW (x)
and the free frequency vibrations ω depend on the boundary conditions and on the vibration
amplitude α. The above solution does not satisfy non-linear equation (2.6) at every time. We
minimize the error by equating the weighed residual of equation (2.6) to zero for one time period
with the weighting function cosωt (Dumir and Bhaskar, 1988; Szemplińska-Stupnicka, 1983). As
a result, the equilibrium equation in the dimensionless form is obtained

d4W

dξ4
+
1

F

[

Ω2
F + f

λ2
− (s+ c)λ2

]d2W

dξ2
+
Ω2

F

(

f
Ω2

λ4
− 1
)

W = 0 (2.8)

where

W =W (ξ) ξ =
x

L
f =
2(1 + ν)

κ

s =
H

EA
λ =
L

ρ
Ω =

mω2L4

EJ

c =
3

8

δ2

λ2

1
∫

0

dW

dξ
dξ δ =

α

ρ
F =
s+ c

f
+ 1

and ν is Poisson’s ratio. The solution tf equation (2.8) is

W (x) = C1 sinhµ1ξ + C2 cosh µ1ξ + C3 sinµ2ξ + C4 cosµ2ξ (2.9)

where Ci are arbitrary constants and

µ21 =

√

b2

4
−
Ω

F

(fΩ2

λ4
− 1
)

+
b

2
µ22 =

√

b2

4
−
Ω

F

(fΩ2

λ4
− 1
)

−
b

2

b =
1

F

[Ω2

λ2
(F + f)− (s+ c)λ2

]
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From the third equation of (2.3) one finds that the dimensionless rotation function depending
on the spatial variable is of the form

φ(ξ) = (C1 sinhµ1ξ + C2 cosh µ1ξ)
β1
µ1
− (C3 cosµ2ξ + C4 sinµ2ξ)

β2
µ2

(2.10)

where β1 = fΩ
2/λ2 + Fµ21 and β2 = fΩ

2/λ2 − Fµ22.
The boundary conditions for beams with immovable supports are:

— for the hinged end

W = 0 M = EJ
dφ

dξ
= 0

— for the clamped end

W = 0 φ = 0

The frequency equations derived for several combinations of the boundary conditions are:
— for the hinged-hinged beam

sinhµ1 sinµ2 = 0 (2.11)

— for the clamped-clamped beam

2 +
β22µ

2
1 − β

2
1µ
2
2

β1β2µ1µ2
sinhµ1 sinµ2 − 2 cosh µ1 cosµ2 = 0 (2.12)

— for the clamped-hinged beam

β2µ1 tanhµ1 + β1µ2 tanhµ2 = 0 (2.13)

Since the non-linear frequency parameter Ω2 and the non-linear vibration mode W depend
on the vibration amplitude α, the eigenvalue problem of non-linear equation (2.8) is solved
iteratively (Lewandowski, 1987). For hinged-hinged beams, the non-linear mode is identical to
the linear one and independent of the amplitude. Hence the frequency parameter Ω2 can be
expressed in an analytical form as the root of the quadratic equation

f
Ω4

λ4
−Ω2

[

(F + k)
k2π2

λ2
+ 1
]

+ k2π2[Fk2π2 + λ(s+ c)] = 0 (2.14)

where c = (3/16)(k2π2δ2/λ2), k is the number of the vibration mode. Ommiting the rotary
inertia effect, yields

Ω2 = k2π2
Fk2π2 + λ2(s+ c)

1 + f k
2π2

λ2

(2.15)

By assuming in (2.14) or (2.15) f = 0, one obtains non-linear frequencies for the Bernoulli-
-Euler beam in which the axial force effect is taken into account. Table 1 presents the rotary
inertia effect Iρ on the non-linear frequency ratio ω/ω1 for the fundamental vibration mode of
simply-supported beams (α is the amplitude in the middle of the beam, Ω1 is the frequency
parameter determined for linear vibration). The calculations have been carried out for ν = 0.3,
κ = 5/6 and H = 0, respectively.
The backbone curves for various slenderness ratios for two modes of vibration of a simply-

-supported Timoshenko beam are shown in Fig. 1.
For the first mode (k = 1), α is the amplitude in the middle of the beam (ξ = 1/2), for k = 2,

ξ = 1/4 (L is the beam length). One can see that the frequency ratio for the simply-supported
Timoshenko beam depends on the kind of mode.
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Table 1. Non-linear frequency ratio ω/ω1 for simply-supported continuous beams

Bernoulli-Euler beam Timoshenko beam
α/ρ λ = 30 λ = 10 λ = 20 λ = 30

Iρ 6= 0 Iρ = 0 Iρ 6= 0 Iρ = 0 Iρ 6= 0 Iρ = 0 Iρ 6= 0 Iρ = 0

1.0 1.0897 1.0897 1.1158 1.1159 1.0963 1.0963 1.0927 1.0927

2.0 1.3229 1.3229 1.4068 1.4075 1.3445 1.3445 1.3325 1.3325

3.0 1.6394 1.6394 1.7889 1.7908 1.6785 1.6785 1.6559 1.6559

4.0 2.0000 2.0000 2.2146 2.2190 2.0568 2.0569 2.0255 2.0255

Ω1 9.8159 9.8696 8.3874 8.6299 9.4106 9.5103 9.6556 9.7050

Fig. 1. The backbone curves for various slenderness ratios for two modes of vibration of a
simply-supported Timoshenko beam

3. Finite Element Method formulation

Let us assume the element shape functions to be linear and independent

u(x, t) = u1(t) + [u2(t)− u1(t)]
x

a

w(x, t) = w1(t) + [w2(t)− w1(t)]
x

a

θ(x, t) = θ1(t) + [θ2(t)− θ1(t)]
x

a

(3.1)

The beam element convention is presented in Fig. 2.

Substituting (3.1) into (2.1), we obtain the element stiffness matrix in which the non-linear
part corresponding to the nodal quantities {u1 u2 w1 θ1 w2 θ2}

T can be written in the
following form
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Fig. 2. Timoshenko beam convention

K∗N=
EA

a



















1 −1 (w2 − w1)/(2a) 0 −(w2 − w1)/(2a) 0
−1 1 −(w2 − w1)/(2a) 0 (w2 − w1)/a 0

(w2 −w1)/a −(w2 − w1)/a (w2 − w1)
2/(2a2) 0 −(w2 − w1)

2/(2a2) 0
0 0 0 0 0 0

−(w2 − w1)/a (w2 − w1)/a −(w2 − w1)
2/(2a2) 0 (w2 − w1)

2/(2a2) 0
0 0 0 0 0 0



















Neglecting the horizontal forces in the calculations yields for each element the following rela-
tionship

C =
EA

a

[

u1 − u2 +
w1(w2 − w1)

2a
−
w2(w2 − w1)

2a

]

= const (3.2)

Assuming that the considered Timoshenko beam with immovable supports is divided into
elements with equally spaced nodes and summing up both sides of equation (3.2) in the range
from 0 to R (R is the number of beam elements), we have

C =
EA

2Ra

R−1
∑

r=0

(wr+1 − wr)
2 (3.3)

In order to avoid the shear locking which occurs in linear elements and leads to erroneous results,
we improve the elements by introducing a scaling factor d/(d + 1) into the flexural and shear
matrices (Rakowski, 1990). Replacing E and G by Ed/(d+1) and Gd/(d+1), respectively, and
eliminating the unknowns ui, the element stiffness matrix can be expressed as follows

K =
EJ

a3
1

d+ 1
[dKF +KS + (d+ 1)(KG +KN )] (3.4)

where d = [24(1 + ν)ρ2]/(κa4), KF , KS , KG and KN are the flexural, shear, geometrical and
non-linear matrices, respectively. They refer to the nodal quantities {w1 aθ1 w2 aθ2}

T and
have the form

KF =











0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1











KS =











12 6 −12 6
6 4 −6 2
−12 −6 12 −6
6 2 −6 4











KG =
a2

EJ











H 0 −H 0
0 0 0 0
−H 0 H 0
0 0 0 0











KN =
a2

EJ











C 0 −C 0
0 0 0 0
−C 0 C 0
0 0 0 0











(3.5)
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We assume the nodal displacements to be harmonic

wr = αWr cosωt θr =
α

a
φr cosωt (3.6)

where α is the amplitude of an arbitrarly chosen node i, Wr and φr are dimensionless functions
of the discrete variable r (r is the index number of the node), r ∈ 〈0, R〉. By using the shape
functions given in (3.1), the consistent matrix is obtained as

MC =
am

6











2 0 1 0
0 2ρ2/a2 0 ρ2/a2

1 0 2 0
0 ρ2/a2 0 2ρ2/a2











(3.7)

If the beam, divided into a regular mesh, consists of identical elements, the dynamic equili-
brium conditions can be derived according to the following way. We substitute (3.5) into (3.4)
and take into account element mass matrix (3.7). Having assembled the two adjacent beam
elements (r − 1, r) and (r, r + 1), we can write the equilibrium of moments and forces for an
arbitrary node r as

6(Wr−1 −Wr) + 2(φr−1 + 2φr) + 6(Wr −Wr+1) + 2(2φr + φr+1)− d(φr−1 + φr)

+ d(φr − φr+1)− 4Λ
2(d+ 1)e2(φr−1 + 4φr + φr+1) = 0

− [12 + 6(d+ 1)](Wr−1 −Wr) + [12 + 6(d + 1)D](Wr −Wr+1)− 6(φr−1 − φr)

+ 6(φr − φr+1)− 4Λ
2(d+ 1)(Wr−1 + 4Wr +Wr+1) = 0

(3.8)

Introducing the shifting operator Enr and central difference operator ∆
n
r into equations (3.8),

we obtain two difference equations with unknown nodal variables φr and Wr

[

(∆2 + 6)−
d

2
∆2
]

φr − 3(E− E
−1)Wr − 2Λ

2(d+ 1)e2(∆2 + 6)φr = 0

(E− E−1)φr − 2[2 + D(d + 1)]∆
2Wr −

2

3
Λ2(d + 1)(∆2 + 6)Wr = 0

(3.9)

where

∆2 = ∆2r = E+ E
−1 − 2 En = Enr Λ =

Ω2

24R4

Ω2 =
mω2L4

EJ
D =

a2(H + C)

6EJ
e =
R

λ

L is length of the beam (L = aR), λ is the slenderness ratio (λ = L/ρ.

Equating to zero the weighed residual of equation (3.9) for one time period (0 − 2π) with
the weighting function cosωt (Marur and Prathap, 2005)

2π
∫

0

εi(r, t) cos ωt d(ωt) = 0 i = 1, 2 (3.10)

(ε1, ε2 are the left-hand sides of the first and second equation of (3.9) multiplied by cosωt) one
obtains the equilibrium conditions given in the form of equations (3.9) where now

D =
a2

6EJ

(

H +
3

4
C
)

C =
EARδ2

2λ2

R−1
∑

r=0

(Wr+1 −Wr)
2 (3.11)
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After elimination of φr from coupled equation (3.9), we can rewrite them in form of a single
fourth-order homogenous difference equation

B1∆
4Wr +B2∆

2Wr +B3Wr = 0 (3.12)

where

B1 = 1−D
(

1−
d

2

)

+
Λ2

3
(d− 2 + 12e2) + 2Λ2De2(d+ 1) +

4

3
Λ4e2(d+ 1)

B2 = −6D + 2Λ
2(d− 4 + 12e2) + 12Λ2De2(d+ 1) + 16Λ4e(d + 1)

B3 = −24Λ
2 + 48Λ4e2(d+ 1)

The analytical solution to equation (3.12) is

Wr = C1 sinhµ1r + C2 coshµ1r + C3 sinhµ2r + C4 cosh µ2r (3.13)

where µ1, µ2 can be real, imaginary or complex, and they must fulfill the characteristic quadratic
equation

B1 cosh
2 µ+

(

−2B1 +
B2
2

)

coshµ+B1 −B2 +
B4
4
= 0 (3.14)

The function φr can be derived from the second equation of (3.9) in the form

φr = D2 sinhµ1r +D1 coshµ1r +D4 sinhµ2r +D3 coshµ2r (3.15)

where

D1 = β1C1 D2 = β1C2 D3 = β2C3 D4 = β2C4

β1 =
2

sinhµ1

{

(cosh µ1 − 1)
[

1 +
D

2
(d+ 1)

]

+
Λ2

3
(coshµ1 + 2)(d+ 1)

}

β2 =
2

sinhµ2

{

(cosh µ2 − 1)
[

1 +
D

2
(d+ 1)

]

+
Λ2

3
(coshµ2 + 2)(d+ 1)

}

If a lumped mass model of the Timoshenko beam is considered, the element mass matrix has
the following form

M1 =
am

2











1 0 1 0
0 ρ2/+ a2 0 ρ2/a2

1 0 1 0
0 ρ2/a2 0 ρ2/a2a2











(3.16)

The difference equilibrium equations corresponding to element mass matrix M1 (3.16) are

[

(∆2 + 6)−
d

2
∆2
]

φr − 3(E− E
−1)Wr − 12Λ

2e2(d + 1)φr = 0

(E− E−1)φr − 2[2 +D(d+ 1)]∆
2Wr − 4∆

2(d+ 1)Wr = 0
(3.17)

or expressed in form of an equation with one unknown Wr

B1∆
4Wr +B2∆

2Wr +B3Wr = 0

where

B1 = 1−D
(

1−
d

2

)

B2 = −6D + 2Λ
2[d− 2 + 12e2 + 6De2(d+ 1)]

B3 = −24Λ
2 + 48Λ4e2(d+ 1)
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The solution to this equation and the expression of the characteristic equation are identical
to those given in (3.13) and (3.14), respectively. But in this case, the quantities βi present in
the relationship between Di and Ci (see (3.15)), derived from (3.17), are defined as

β1 =
2

sinhµi

{

coshµi − 1)
[

1 +
D

2
(d+ 1)

]

+ Λ2(d+ 1)
}

i = 1, 2

Since the non-linear frequency parameter Λ and the non-linear vibration modes Wr and φr
depend on the amplitude α, the eigenvalue problem of non-linear equation (3.12) is solved ite-
ratively. The iteration starts by assuming the magnitude of the constant D (it is convenient in
the first step of iteration to use the value calculated for the linear case). From the frequency
equations adequate to the considered boundary conditions, one finds µ1 and µ2. Then the vi-
bration mode Wr is determined and the resulting parameter D is compared with the given D.
The iterative computation is continued until the difference |D − D| is less than the adopted
tolerance. The boundary conditions are considered below.

3.1. Simply-supported beam

For a simply supported beam with the boundary nodes 0 and R, the boundary conditions
W0 = WR = 0, M0 =MR = 0 lead to the following mode of vibrations which is independent of
the vibration amplitude

Wr = C1 sin(kπr) (3.18)

and k being the number of mode. The frequency parameter Λ can be determined as the root of
the quadratic equation

akΛ
2 + bkΛ+ ck = 0 (3.19)

where

ak = 4e
2(d+ 1)

{1

3

[

cos
(kπ

R

)

− 1
]2
+ 2
[

cos
(kπ

R

)

− 1
]

+ 3
}

bk =
[

cos
(kπ

R

)

− 1
]2[

−
2

3
+
d

3
+ 4e2 + 2e2(d+ 1)D

]

+
[

cos
(kπ

R

)

− 1
]

[−4 + d+ 12e2 + 6e2(d+ 1)D]− 6

ck =
[

cos
(kπ

R

)

− 1
]{[

cos
(kπ

R

)

− 1
][

1−D
(

1−
d

2

)]

− 3D
}

When the lumped mass model is considered, the above coefficients must be replaced by

ak = 4e
2(d+ 1)

bk =
[

cos
(kπ

R

)

− 1
]2
[−2 + d+ 12e2 + 6e2(d+ 1)D]− 6

ck =
[

cos
(kπ

R

)

− 1
]{[

cos
(kπ

R

)

− 1
][

1−D
(

1−
d

2

)]

− 3D
}

3.2. Clamped-clamped beam

The boundary conditions W0 = WR = 0, φ0 = φR = 0 request the following equations to be
fulfilled

C1[β2 sinh(µ1R)− β1 sinh(µ2R)] + C2β2[cosh(µ1R)− cosh(µ2R)] = 0

C1β1[cosh(µ1R)− cosh(µ2R)] + C2[β1 sinh(µ1R)− β2 sinh(µ2R)] = 0
(3.20)
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Equating to zero the determinant of the set of equations (3.20) yields the characteristic
equation

2β1β2[cosh(µ1R) cosh(µ2R)− 1]− (β
2
1 + β

2
2) sinh(µ1R) sinh(µ1R) = 0 (3.21)

The modes of vibrations are

Wr = C1
{

sinh(µ1r)−
β1
β2
sinh(µ2r)− β[cosh(µ1r)− cosh(µ2r)]

}

(3.22)

where

β =
β1[cosh(µ1R)− cosh(µ2R)]

β1 sinh(µ1R)− β2 sinh(µ2R)

3.3. Hinged-clamped beam

In this case, the boundary conditions are given by W0 = WR = 0, M0 = 0, φR = 0, which
refer to the homogenous equations

C1 sinh(µ1R) + C3 sinh(µ2R) = 0

C1β1 cosh(µ1R) + C3β2 cosh(µ2R) = 0
(3.23)

and give the characteristic equation

β2 tanh(µ1R)− β1 tanh(µ2R) = 0 (3.24)

The modes of vibrations can be expressed as

Wr = C1
[

sinh(µ1r)−
sinh(µ1R)

sinh(µ2R)
sinh(µ2r)

]

(3.25)

Let us now analyse the reduced-integrated linear elements. When the one-point quadrature
is applied to the shear term of strain energy (2.1), the element stiffness matrix becomes

K =
EJ

a3
1

d
[(d− 1)KF +KS + d(KG +KN )] (3.26)

where KF , KS , KG and KN are defined as in (3.4). The difference between the above matrix
and that given in (3.4) is that in (3.26) the expression (d− 1) is used instead of d.

4. Numerical examples

The non-linear frequency ratios are determined for beams with various boundary conditions and
for a wide spectrum of the thickness ratio. The consistent and lumped mass model of beams
are considered. The results of computation are compared with the results obtained for linear
elements to which the reduced-selective integration technique has been applied. The calculations
have been carried out with the values ν = 0.3, κ = 5/6 and H = 0. The following indications
are accepted:

• CONT – the beam with continuous mass distribution,

• MOD – the beam divided into modified finite elements proposed by Rakowski (1990),

• RI – the beam divided into linear elements with reduced integration correction.

Numerical results are obtained for the lumped mass model. Values in the parentheses refer to
the consistent mass model.
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Table 2. Comparison of the frequency ratio (ω/ω1) for continuous and discrete (R = 8) simply-
-supported Timoshenko beams

α/ρ
λ = 20 λ = 100

CONT MOD RI CONT MOD RI

First mode (k = 1)

Ω1 9.411 9.528 9.584 9.850 9.977 10.042
(9.406) (9.461) (9.849) (9.914)

1.0 1.0963 1.0941 1.0930 1.0900 1.0878 1.0867

2.0 1.3445 1.3371 1.3336 1.3237 1.3165 1.3129

3.0 1.6785 1.6652 1.6587 1.6409 1.6278 1.6212

4.0 2.0568 2.0375 2.0281 2.0023 1.9832 1.9736

Second mode (k = 2)

Ω1 33.550 35.115 35.772 39.162 41.201 42.338
(33.357) (33.981) (39.138) (40.218)

1.0 1.1158 1.1062 1.1021 1.0908 1.0823 1.0781

2.0 1.4048 1.3763 1.3629 1.3264 1.2983 1.2841

3.0 1.7889 1.7346 1.7108 1.6457 1.5945 1.5685

4.0 2.2146 2.1363 2.1021 2.0092 1.9345 1.8962

Table 3. Frequency ratio (ω/ω1) of the first mode for the clamped-clamped beam (R = 8)

α/ρ
λ = 20 λ = 40 λ = 100

MOD RI MOD RI MOD RI

1.0 1.0251 1.0242 1.0211 1.0204 1.0202 1.0195
(1.0251) (1.0242) (1.0212) (1.0294) (1.0202) (1.0195)

2.0 1.0963 1.0929 1.0817 1.0789 1.0781 1.0756
(1.0965) (1.0931) (1.0819) (1.0790) (1.0783) (1.0757)

3.0 1.2045 1.1975 1.1746 1.1689 1.1675 1.1625
(1.2049) (1.1979) (1.1750) (1.1693) (1.1678) (1.1628)

4.0 1.3400 1.3286 1.2918 1.2830 1.2807 1.2734
(1.3407) (1.3294) (1.2925) (1.2836) (1.2814) (1.2739)

5.0 1.4952 1.4789 1.4265 1.4144 1.4114 1.4021
(1.4962) (1.4800) (1.4276) (1.4154) (1.4123) (1.4028)

Ω1 19.082 19.539 21.609 22.281 22.529 23.295
(18.801) (19.247) (21.282) (21.937) (22.185) (22.932)

CONT

Ω1 18.837 21.296 22.189

5. Concluding remarks

The analytical solution to the non-linear free vibration problem formulated by the finite element
method for the Timoshenko beam is presented. The simple modified linear element is used in the
solution. This improved element gives a better convergence to the solution for the continuous
system than the reduced-integrated one. The good accuracy is achieved for a wide range of the
thickness ratio for the consistent and lumped mass models of the beam. The concept of the
finite difference method is introduced. The main advantage of the presented idea is that even
for a large number of elements it suffices to consider the non-linear eigenvalue problem of only
one difference equation which is equivalent to a set of FEM equilibrium conditions.
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Table 4. Frequency ratio (ω/ω1) of the second mode for the clamped-clamped beam (R = 8)

α/ρ
λ = 20 λ = 40 λ = 100

MOD RI MOD RI MOD RI

1.0 1.0649 1.0604 1.0452 1.0413 1.0402 1.0367
(1.0652) (1.0608) (1.0457) (1.0418) (1.407) (1.10371)

2.0 1.2372 1.2216 1.1680 1.1540 1.1502 1.1379
(1.2383) (1.2228) (1.1697) (1.1557) (1.1519) (1.1393)

3.0 1.4780 1.4480 1.3431 1.3154 1.3079 1.2845
(1.4796) (1.4499) (1.3462) (1.3188) (1.3114) (1.2875)

4.0 1.7591 1.7134 1.5506 1.5068 1.4950 1.4590
(1.7611) (1.7158) (1.5552) (1.5120) (1.5004) (1.4641)

5.0 2.0640 2.0024 1.7790 1.7169 1.7003 1.6499
(2.0662) (2.0050) (1.7846) (1.7236) (1.7074) (1.6572)

Ω1 46.229 48.146 58.332 62.197 63.945 69.172
(43.863) (45.585) (55.152) (58.717) (60.409) (65.225)

CONT

Ω1 44.330 55.423 60.519

Table 5. Frequency ratio (ω/ω1) of the third mode for the clamped-clamped beam (R = 8)

α/ρ
λ = 20 λ = 40 λ = 100

MOD RI MOD RI MOD RI

1.0 1.1095 1.0989 1.0586 1.0473 1.0442 1.0335
(1.1117) (1.1009) (1.0603) (1.0489) (1.0457) (1.0347)

2.0 1.3768 1.3433 1.2124 1.1737 1.1630 1.1254
(1.3799) (1.3461) (1.2126) (1.1777) (1.1671) (1.1290)

3.0 1.7252 1.6652 1.4268 1.3532 1.3329 1.2599
(1.7262) (1.6657) (1.4310) (1.3581) (1.3384) (1.2652)

4.0 2.1172 2.0290 1.6793 1.5673 1.5367 1.4234
(2.1133) (2.0241) (1.6825) (1.5717) (1.5425) (1.4300)

5.0 2.5518 2.4235 1.9562 1.8047 1.7774 1.6234
(2.5283) (2.4042) (1.9579) (1.8082) (1.7694) (1.6152)

Ω1 81.697 85.847 112.487 124.642 130.900 151.802
(72.825) (76.475) (99.927) (110.404) (116.090) (133.961)

CONT

Ω1 75.077 101.659 117.002
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